Area of Triongles

Recap -Area of Rectangles and Squares

Calculate the area of these shapes.

Area of Rectangles and Squares

Calculate the area of these shapes. Order the shapes from smallest to largest area to spell a word connected to this topic.

How to Calculate the Area of a Right-Angled Triangle

To calculate the area of a right-angled triangle, multiply the base by the height and divide by 2.

The base multiplied by the height is
$6 \mathrm{~cm} \times 5 \mathrm{~cm}=30 \mathrm{~cm}^{2}$
$30 \mathrm{~cm}^{2} \div 2=15 \mathrm{~cm}^{2}$
The area of this triangle is $\mathbf{1 5} \mathbf{c m}^{\mathbf{2}}$.
You might see it written like this $\frac{\mathbf{1}}{\mathbf{2}}(\mathbf{b} \times \mathbf{h})$, like this $\underline{\mathbf{b}} \mathbf{h}$, or like this $\mathbf{b} \times \mathbf{h} \div \mathbf{2}$.

$$
2
$$

They all mean the same thing and give the same answer.

How to Calculate the Area of a Right-Angled Triangle

But why is $(b \times h) \div 2$ the formula to calculate the area of a right-angled triangle?

6 cm

Let's extend this triangle to make a rectangle.
The area of the rectangle is $6 \mathrm{~cm} \times 5 \mathrm{~cm}=$ $30 \mathrm{~cm}^{2}$.

The area of the triangle is half of this: $(6 \mathrm{~cm} \times 5 \mathrm{~cm}) \div 2=15 \mathrm{~cm}^{2}$

Find the Area of Right-Angled Triangles

Find the area of these right-angled triangles:

Find the Area of Right-Angled Triangles,

Find the area of these right-angled triangles:

How to Calculate the Area of Other Triangles

The area of this scalene triangle is $16 \mathrm{~cm}^{2}$.
Does the same formula work?
Try it. (b) \mathbf{h}) $\div \mathbf{2}$

8 cm

Base $8 \mathrm{~cm} \times$ height $4 \mathrm{~cm}=32 \mathrm{~cm}$
$32 \mathrm{~cm} \div 2=16 \mathbf{c m}^{\mathbf{2}}$

Yes, the same formula works.
Let's find out why.

How to Calculate the Area of Other Triangles

Let's consider this scalene triangle as 2 right-angled triangles.
The area of triangle A
 is $(2 \mathrm{~cm} \times 4 \mathrm{~cm}) \div 2=4 \mathrm{~cm}^{2}$

The area of triangle B is $(6 \mathrm{~cm} \times 4 \mathrm{~cm}) \div 2=12 \mathbf{c m}^{2}$

$$
A+B=16 \mathrm{~cm}^{2}
$$

The area of the whole triangle is $(8 \mathrm{~cm} \times 4 \mathrm{~cm}) \div 2=16 \mathrm{~cm}^{2}$.

Find the Area of Other Triangles

Find the area of these triangles:

Find the Area of Other Triangles

Find the area of these triangles:

Find the Unmarked Side

If the area of this triangle is $30 \mathrm{~cm}^{2}$, calculate the length of the side marked with a question mark.

Find the Unmarked Side

If the area of this triangle is $30 \mathrm{~cm}^{2}$, calculate the length of the side marked with a question mark.

Answer:

$$
\begin{aligned}
& 30 \mathrm{~cm}^{2} \times 2=60 \\
& 60 \div 5 \mathrm{~cm}=12 \mathrm{~cm}
\end{aligned}
$$

