

Area of a Parallelogram

Diving

Use the formula base \times height to calculate the area of a parallelogram.

Find the area of this parallelogram.

$12 \mathrm{~cm} \times 14 \mathrm{~cm}=168 \mathrm{~cm}^{2}$ Area $=168 \mathrm{~cm}^{2}$

What is the missing measurement in this parallelogram?

\cdots

Use the formula base \times height to calculate the area of a parallelogram.

Jack has calculated that both of these parallelograms have an area of $144 \mathrm{~cm}^{2}$.

Do you agree with Jack? Explain why.

Jack has correctly calculated the area of this parallelogram. $16 \mathrm{~cm} \times 9 \mathrm{~cm}=144 \mathrm{~cm}^{2}$

However, to calculate the area of $144 \mathrm{~cm}^{2}$ on this parallelogram, Jack has incorrectly multiplied the base by the 8 cm side length. He should have used the perpendicular height of 7 cm . The correct calculation is: $18 \mathrm{~cm} \times 7 \mathrm{~cm}=126 \mathrm{~cm}^{2}$

Area of a Parallelogram Deepest

Use the formula base \times height to calculate the area of a parallelogram.
I am thinking of a parallelogram with side lengths that are whole numbers.
Give the dimensions of all the possible parallelograms I could be thinking of.

It has an area of $96 \mathrm{~cm}^{2}$.
Its base measures between 10 cm and 50 cm . Its height measures between 3 cm and 10 cm .

between 10 cm and 50 cm

If the parallelogram has an area of $\mathbf{9 6} \mathrm{cm}^{\mathbf{2}}$, then it could have the following dimensions: base $=b$ and height $=h$
$b=3 \mathrm{~cm}$ and $\mathrm{h}=32 \mathrm{~cm}$
$b=4 \mathrm{~cm}$ and $\mathrm{h}=\mathbf{2 4} \mathbf{c m}$
$b=6 \mathrm{~cm}$ and $h=16 \mathrm{~cm}$
$b=8 \mathrm{~cm}$ and $\mathrm{h}=12 \mathrm{~cm}$

